VMClock: Efficient time synchronisation for virtual
machines.

v1.0 David Woodhouse <dwmw@amazon.co.uk> 2025-11-26

Background

The requirements for accurate synchronisation of application clocks against real wallclock time are becoming ever more
demanding. Increasingly cloud providers are exposing precision clock devices to virtual machines to allow the guest operating
systems to synchronise their clocks.

Time on modern systems is typically derived from a CPU-internal counter (TSC, timebase, arch counter) which runs at a
nominally constant frequency of typically between 1GHz and 4GHz. In practice, the frequency of the underlying hardware
counter will vary with environmental conditions, with a tolerance of the order of +50PPM. It is this variance which must
constantly be corrected by synchronising against an external clock.

Synchronisation against an external clock typically works by reading the CPU counter, then reading the external clock, and
finally reading the CPU counter again — then assuming that the external clock reading was concurrent with a point in time
between the two CPU counter readings to give a pair of { CPU counter, real time} values. Successive such readings are used
to calibrate the precise rate at which the CPU counter is running, in order to use it for precision timekeeping.

When applied at scale to virtual machines, there are a number of problems with this approach. Firstly, where virtual CPUs are
overcommitted across a smaller number of physical CPUs in a host, guests experience “steal time” — time when their vCPU is
not actually running. That steal time is unpredictable and can occur in the critical period between one read of the CPU counter
and the next, affecting the precision of the estimated reading.

A remedy for this issue is to repeat the reading a number of times, and to use the result where the latency between first and
last CPU counter reading is the lowest. Which exacerbates the second problem, that a large number of separate guest
operating systems on the same host are now repeating the same work of calibrating the same underlying hardware oscillator.

The third major problem of guest-calibrated time is Live Migration, in which a guest is transparently moved from one host to
another for maintenance reasons. When this happens, the guest can experience a step change in both the frequency and the
value of the CPU counter. The frequency because the migrated guest is now using a different underlying counter, and the
value because correctly setting the counter value seen by the guest is dependent on the time synchronisation of each
hypervisor host. After a Live Migration, a guest’s clock should be considered inaccurate until it has been resynchronised from
scratch. Failure to do so can lead to data corruption, in cases where database coherency depends on accurately timestamped
transactions.

The VMclock device

The VMClock device resolves the above issues by allowing the hypervisor to synchronise the hardware clock against external
time, and simply present the results to each guest in a shared memory region in the form of a formula for converting the CPU
counter into real time. This allows guests to have precision timestamps even immediately after a Live Migration event, and with
no need to provide further clock devices to the guest or for guests to spend their own CPU time on calibration.

For guests which do perform their own additional refinement of the clock via NTP or other means, a disruption signal is
provided which allows them to discard any such refinement after Live Migration, and start again with the data from the new
hypervisor host.

The vmclock_abi structure

The hypervisor provides a structure in shared memory which is readable by the guest, and advertises it via either ACPI or
device-tree devices as described later. Where possible, fields and their values are aligned with the definitions in the proposed
virtio-rtc standard. As with virtio, all fields are stored in little-endian form.

The fields up to and including time_type are constant and shall not change during the lifetime of the device.

Offset

0x00

0x04

0x08

0x0a

0x0b

0x0c

0x10

0x18

0x20

Field

uint32_t magic

uint32_t size

uintl6_t version

uint8_t counter_id

uint8_t time_type

uint32_t seq_count

uinté4_t disruption_marker

uinté4_t flags

uintlé_t pad

Description
Magic value 0x4b4c4356 (“VCLK”)

Size of region containing this structure (typically a full page at the granularity at which the hypervisor maps
memory to the guest)

This standard defines version 1

The hardware counter used as the basis for clock readings. The values of this field correspond to the
VIRTIO_RTC_COUNTER_xxx values:

*@x00: VMCLOCK_COUNTER_ARM_VCNT: The Arm architectural timer (virtual)
*@x01: VMCLOCK_COUNTER_X86_TSC: The x86 Time Stamp Counter
*OxFF: VMCLOCK_COUNTER_INVALID: No precision clock is advertised

Indicates the type of clock exposed through this interface. The values of this field correspond to the
VIRTIO_RTC_CLOCK_xxx values, exceptthat smearing of clocks is not supported as it is antithetical to
precision:

*0x00: VMCLOCK_TIME_UTC (Not recommended)
*0x@1: VMCLOCK_TIME_TAI
*@x02: VMCLOCK_MONOTONIC

For UTC and TAl, the calculation results in a number of seconds since midnight on 1970-01-01. Amonotonic
clock has no defined epoch. Since UTC has leap seconds and a given numbered second may occur more than
once, its use is NOT RECOMMENDED in VMClock. Implementations should advertise TAl, with a correct UTC
offset.

This field is used to provide a sequence-based read/write lock for the non-constant fields which follow. To
perform an update, the device will:

« Increment this field to an odd value (with the low bit set).
« Change other fields as appropriate.
« Increment this field again to an even value.

This field is changed each time there may be a disruption to the hardware counter referenced by counter_id, for
example through live migration to a new hypervisor host.

Feature flags.

*Bit0: VMCLOCK_FLAG_TAI_OFFSET_VALID

Indicates that the tai_offset field below contains a correct value.

*Bit 1: VMCLOCK_FLAG_DISRUPTION_SOON

Indicates that a clock disruption event (e.g. live migration) is expected to happen in the next day or so.
*Bit2: VMCLOCK_FLAG_DISRUPTION_IMMINENT

Indicates that a clock disruption event is expected to happen within the next hour or so.

*Bit 3: VMCLOCK_FLAG_PERIOD_ESTERROR_VALID

*Bit4: VMCLOCK_FLAG_PERIOD_MAXERROR_VALID

*Bit5: VMCLOCK_FLAG_TIME_ESTERROR_VALID

*Bit6: VMCLOCK_FLAG_TIME_MAXERROR_VALID

These flags indicate the presence of valid information for the estimated and maximum error fields for the
counter period and reference time.

*Bit7: VMCLOCK_FLAG_VM_GEN_COUNTER_PRESENT

Indicates that the vm_generation_counter field is present.

*Bit8: VMCLOCK_FLAG_NOTIFICATION_PRESENT

Indicates that the VMClock device will send an interrupt or ACPI notification every time it updates seq_count to
anew even value.

Unknown flags set by the device can safely be ignored. If a change in behaviour is required by a future version
of this specification, it would come with a new value of the version field or a new time_type to avoid breaking
compatibility with existing users.

Unused

0x22 e o Synchronisation status of the clock:

*@x00: VMCLOCK_STATUS_UNKNOWN: The clockis in anindeterminate state. Clock parameters in the
VMClock structure are not valid and should not be relied upon.

e 0x01: VMCLOCK_STATUS_INITIALIZING: The clock is being initialized and is not yet synchronized. Clock
parameters in the VMClock structure are not valid and should not be relied upon.

e 0x02: VMCLOCK_STATUS_SYNCHRONIZED: The clock is synchronized. Clock parameters in the VMClock
structure are expected to be correct and may be relied upon.

« 0x03: VMCLOCK_STATUS_FREERUNNING: The clock has transitioned away from being synchronized and is
in a free-running state. Clock parameters in the VMClock structure are expected to be valid and may be relied
upon.

« Ox04: VMCLOCK_STATUS_UNRELIABLE: The clock is considered broken. Clock parameters in the
VMClock structure should not be relied upon.

The time exposed through the VMClock device shall never be smeared. This field corresponds to the ‘subtype’
field in virtio-rtc, which indicates a smearing method. In this case it merely provides a hint to the guest operating
system, such that if the guest OS wants to provide its users with an alternative clock which does not follow UTC,
itmay do so in a fashion consistent with the other systems in the nearby environment.

0x23 uint8_t leap_second_smearing_hint

e 0x00: VMCLOCK_SMEARING_STRICT
e Ox01: VMCLOCK_SMEARING_NOON_LINEAR
e Ox02: VMCLOCK_SMEARING_UTC_SLS

Signed offset from TAl to UTC at the reference time specified in time_sec and time_frac_sec, in seconds.
Valid if the corresponding bitin the flags field is set. Implementations SHOULD populate this field; the value at
time of writing is 37 and is expected to remain so until/unless the next leap second is announced.

0x24 intl6_t tai_offset_sec

0x26 int8 t 1 indicat . - -
uinte= cap i lcaton Indicates the presence and direction of a leap second occurring in the near future or recent past. Where a

VMClock device exposes UTC instead of TAI, this allows the user to differentiate between the first and second
occurrences of the second with the same numeric value. Where a guest is smearing time to preserve
monotonicity in the vicinity of a leap second, this information allows for that too. (This field was present in earlier
versions of the proposed virtio-rtc specification but was removed.)

This value of this field shall be valid for the point in time referenced by the time_sec and time_frac_sec
fields.

*0x00: VMCLOCK_LEAP_NONE: No known nearby leap second

*@x01: VMCLOCK_LEAP_PRE_POS:Apositive leap second will occur at the end of the present month
*@x02: VMCLOCK_LEAP_PRE_NEG:Anegative leap second will occur at the end of the present month
*0x03: VMCLOCK_LEAP_POS:Apositive leap second is currently occurring (set during the 23:59:60 second)
*@x04: VMCLOCK_LEAP_POST_POS:Apositive leap second occurred at the end of the previous month
*@x05: VMCLOCK_LEAP_POST_NEG:Anegative leap second occurred at the end of the previous month

0x27 uints_t counter_period_shift Additional shift applied to all the counter_period*_frac_sec fixed-point fields.

0x28 R eumEar. velue Value of the hardware counter at the time represented by time_sec + time_frac_sec.

0x30 GiREe4E cotnterlperiod fraclisae Period of a single counter tick, in units of 1 >> (64 + counter_period_shift)

0x38 uint64_t counter_period_esterror_ra Estimated + error of counter_period_frac_sec in the same units.
te_frac_sec

0x40 uint64_t counter_period_maxerror_ra Maximum + error of counter_period_frac_sec in the same units.
te_frac_sec

0x48 uint64_t time_sec Reference time point, seconds since epoch defined by time_type field.

" . . . ”
0x50 A e, e See Fractional part of reference time, in units of second / 264,

- = i + i i i - +t4 .
0x58 R ¢ S CSEarror MPRDSEE Estimated + error of the time given in time_sec + time_frac_sec, in nanoseconds

. 5 i + i i i : +t4 .
0x60 R ¢ IR I error. PROSEE Maximum = error of the time given in time_sec + time_frac_sec, in nanoseconds

Achange in this field indicates that the guest has been loaded from a snapshot. In addition to handling a
disruption in time (which will also be signalled through the disruption_marker field), a guest may wish to
discard UUIDs, reset network connections or reseed entropy, etc.

0x64 uint64_t vm_generation_count

Notification
After incrementing the seq_count field to an even value after changing the non-constant fields in the structure, a VMClock

device may raise an interrupt or ACPI notification. VMClock devices that raise interrupts on new seq_count values must set
the VMCLOCK_FLAG_NOTIFICATION_PRESENT bitin flags field to advertise the capability.

Calculating time

The VMClock structure provides the following values:

e Reference time T, inthe time_sec and time_frac_sec fields
e Counter value C, of the hardware counter at time T, in the counte r_value field.

e The period P of a single counter tick is given by counter_period_frac_sec >> counter_period_shift.
For example, a 1GHz clock would have a period of 1ns, which could naively be represented as 0x44B82FAQA / 2* by
putting that value in counter_period_frac_sec. Over long periods of time, however, the loss of precision would be
noticeable. So the same 1ns period should be more precisely represented as 0x89705F4136B4A597 / 2(64+29) by using
that value in counter_period_frac_sec and setting counter_period_shift to 29.

To calculate the time, the guest shall first read the seq_count field and wait until it returns an even value, then read the
hardware counter C,,,. and calculate the time accordingly. Finally, read the seq_count field again. If the value of the

seq_count field has changed, discard the result and repeat the procedure from the beginning.

Where UTC is involved, a correct implementation will need to cope with the case where a leap second has occurred since the
reference time T, and the result needs to be adjusted accordingly. The leap_indicator field exists to resolve the technical
ambiguity but using TAl is simpler and less error prone. It is strongly recommended that implementations use TAI as the time
standard and advertise a correct TAl offset, to avoid this complexity.

Time error calculation

The VMClock structure optionally advertises maximum error bounds for the clock data it provides. The earliest and latest
possible time are calculated from the per-count and overall reported maxerror fields.

The device may update the time calibration fields at any time, by incrementing the seq_count to an odd value, adjusting the
parameters, then incrementing seq_count again to an even value. For any given historical counter reading and the error
bounds calculated according to VMClock at that moment, it is guaranteed that any subsequent update to the VMClock fields
shall also result in a calculation for that same counter value which falls between the earliest and latest times that were
previously indicated.

Discovery via ACPI

To expose VMClock to a guest virtual machine, hypervisors need to:

1. Expose a device somewhere in the ACPI namespace with:
a. a hardware ID (_HID) of “AMZNC10C”
b. a DOS Device Name ID (_DDN) of “VMCLOCK”
c. a compatible ID (_CID) of “WVMCLOCK”

2. Attach to the device a “_CRS” method which when evaluated describes the shared memory page where the hypervisor
has stored the vmclock_abi structure. The page needs to reside in an otherwise unused region of guest physical
memory.

3. Optionally, the device can (and should) raise an ACPI Notify operation using notification code 0x80, every time the
seqg_count field changes in a new even number. If implemented, the hypervisor must advertise the notification feature
to the driver by setting the VMCLOCK_FLAG_NOTIFICATION_PRESENT bitin the flags field.

